Blood and Urine Tests Part 3 The Urinalysis (U.A.) Part 2


For those who missed the daily tips, blogs etc, sign up for the free ezine which will have the weeks tips and the blogs. Send an e-mail to, write ezine in the subject, and you’ll receive the ezine every Friday. I’ll need your full name.


Today’s blog is a continuation of the U.A. The Urinalysis.

The Microscopic Examination:

A microscopic examination may or may not be performed as part of a routine urinalysis. It will typically be done when there are abnormal findings on the physical or chemical examination. It is performed on urine sediment – urine that has been centrifuged to concentrate the substances in it at the bottom of a tube. The fluid at the top of the tube is then discarded and the drops of fluid remaining are examined under a microscope. Cells, crystals, and other substances are counted and reported either as the number observed “per low power field” (LPF) or “per high power field” (HPF). In addition, some entities, if present, are estimated as “few,” “moderate,” or “many,” such as epithelial cells, bacteria, and crystals.

Red Blood Cells (RBCs)
Normally, a few RBCs are present in urine sediment. Inflammation, injury, or disease in the kidneys or elsewhere in the urinary tract, for example, in the bladder or urethra, can cause RBCs to leak out of the blood vessels into the urine. RBCs can also be a contaminant due to an improper sample collection and blood from hemorrhoids or menstruation.

White Blood Cells (WBCs)
The number of WBCs in urine sediment is normally low. When the number is high, it indicates an infection or inflammation somewhere in the urinary tract. WBCs can also be a contaminant, such as those from vaginal secretions.

Epithelial Cells
Normally in men and women, a few epithelial cells from the bladder (transitional epithelial cells) or from the external urethra (squamous epithelial cells) can be found in the urine sediment. Cells from the kidney (kidney cells) are less common. In urinary tract conditions such as infections, inflammation, and malignancies, more epithelial cells are present. Determining the kinds of cells present helps the health care provider pinpoint where the condition is located. For example, a bladder infection may result in large numbers of transitional epithelial cells in urine sediment. Epithelial cells are usually reported as “few,” “moderate,” or “many” present per low power field (LPF).

Microorganisms (bacteria, trichomonads, yeast)
In health, the urinary tract is sterile; there will be no microorganisms seen in the urine sediment. Microorganisms are usually reported as “none,” “few,” “moderate,” or “many” present per high power field (HPF). Bacteria from the surrounding skin can enter the urinary tract at the urethra and move up to the bladder, causing a urinary tract infection (UTI). If the infection is not treated, it can eventually move to the kidneys and cause pyelonephritis. Less frequently, bacteria from a blood infection (septicemia) may move into the urinary tract. This also results in a UTI. Special care must be taken during specimen collection, particularly in women, to prevent bacteria that normally live on the skin or in vaginal secretions from contaminating the urine. A urine culture may be performed if a UTI is suspected.

In women (and rarely in men), yeast can also be present in urine. They are most often present in women who have a vaginal yeast infection, because the urine has been contaminated with vaginal secretions during collection. If yeast are observed in urine, then tests for a yeast (fungal) infection may be performed on vaginal secretions.

Trichomonads are parasites that may be found in the urine of women or men (rarely). As with yeast, the trichomonads are actually infecting the vaginal canal and their presence in urine is due to contamination. If these are found during a urinalysis, then follow-up testing for Trichomonas vaginalis may be performed to look for a vaginal infection.

Casts are cylindrical particles sometimes found in urine that are formed from coagulated protein secreted by kidney cells. They are formed in the long, thin, hollow tubes of the kidneys known as tubules and usually take the shape of the tubule (hence the name). Under the microscope, they often look like the shape of a “hot dog” and in healthy people they appear nearly clear. This type of cast is called a “hyaline” cast.

When a disease process is present in the kidney, other things such as RBCs or WBCs can become trapped in the protein as the cast is formed. When this happens, the cast is identified by the substances inside it, for example, as a red blood cell cast or white blood cell cast. Different types of casts are associated with different kidney diseases, and the type of casts found in the urine may give clues as to which disorder is affecting the kidney. Some other examples of types of casts include granular casts, fatty casts, and waxy casts.

Normally, healthy people may have a few (0–5) hyaline casts per low power field (LPF). After strenuous exercise, more hyaline casts may be detected. Cellular casts, such as RBC and WBC casts, indicate a kidney disorder.

Urine contains many dissolved substances (solutes) – waste chemicals that your body needs to eliminate. These solutes can form crystals, solid forms of a particular substance, in the urine if:

  1. the urine pH is increasingly acidic or basic;
  2. the concentration of dissolved substances is increased; and
  3. the urine temperature promotes their formation.

Crystals are identified by their shape, color, and by the urine pH. They may be small, sand-like particles with no specific shape (amorphous) or have specific shapes, such as needle-like. Crystals are considered “normal” if they are from solutes that are typically found in the urine. Some examples of crystals that can be found in the urine of healthy individuals include:

  • amorphous urates
  • crystalline uric acid
  • calcium oxalates
  • amorphous phosphates
  • calcium carbonate

If the crystals are from solutes that are not normally in the urine, they are considered “abnormal.” Abnormal crystals may indicate an abnormal metabolic process. Some of these include:

  • Cystine
  • Tyrosine
  • Leucine

When crystals form as urine is being made in the kidney, they may group together to form kidney “stones” or calculi. These stones can become lodged in the kidney itself or in the ureters, tubes that pass the urine from kidney to the bladder, causing extreme pain.

Medications, drugs, and x-ray dye can also crystallize in urine. Therefore, the laboratorian must be familiar with and trained in the identification of urine crystals.

Dr. Gene Martin

Fibromyalgia Relief Center of the Bay Area

520 South El Camino Real, Ste 520

San Mateo, Ca. 94402




Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s